Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38635941

RESUMEN

BACKGROUND AND OBJECTIVES: Thalamic atrophy can be used as a proxy for neurodegeneration in multiple sclerosis (MS). Some data point toward thalamic nuclei that could be affected more than others. However, the dynamic of their changes during MS evolution and the mechanisms driving their differential alterations are still uncertain. METHODS: We paired a large cohort of 1,123 patients with MS with the same number of healthy controls, all scanned with conventional 3D-T1 MRI. To highlight the main atrophic regions at the thalamic nuclei level, we validated a segmentation strategy consisting of deep learning-based synthesis of sequences, which were used for automatic multiatlas segmentation. Then, through a lifespan-based approach, we could model the dynamics of the 4 main thalamic nuclei groups. RESULTS: All analyses converged toward a higher rate of atrophy for the posterior and medial groups compared with the anterior and lateral groups. We also demonstrated that focal MS white matter lesions were associated with atrophy of groups of nuclei when specifically located within the associated thalamocortical projections. The volumes of the most affected posterior group, but also of the anterior group, were better associated with clinical disability than the volume of the whole thalamus. DISCUSSION: These findings point toward the thalamic nuclei adjacent to the third ventricle as more susceptible to neurodegeneration during the entire course of MS through potentiation of disconnection effects by regional factors. Because this information can be obtained even from standard T1-weighted MRI, this paves the way toward such an approach for future monitoring of patients with MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Núcleos Talámicos/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Tálamo/patología , Imagen por Resonancia Magnética , Atrofia/patología
2.
Sci Rep ; 14(1): 7563, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555415

RESUMEN

In medicine, abnormalities in quantitative metrics such as the volume reduction of one brain region of an individual versus a control group are often provided as deviations from so-called normal values. These normative reference values are traditionally calculated based on the quantitative values from a control group, which can be adjusted for relevant clinical co-variables, such as age or sex. However, these average normative values do not take into account the globality of the available quantitative information. For example, quantitative analysis of T1-weighted magnetic resonance images based on anatomical structure segmentation frequently includes over 100 cerebral structures in the quantitative reports, and these tend to be analyzed separately. In this study, we propose a global approach to personalized normative values for each brain structure using an unsupervised Artificial Intelligence technique known as generative manifold learning. We test the potential benefit of these personalized normative values in comparison with the more traditional average normative values on a population of patients with drug-resistant epilepsy operated for focal cortical dysplasia, as well as on a supplementary healthy group and on patients with Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Inteligencia Artificial , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Aprendizaje , Enfermedad de Alzheimer/diagnóstico por imagen
3.
Brain Commun ; 6(2): fcae055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444913

RESUMEN

Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longitudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supranuclear palsy-Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy-Richardson syndrome patients from the Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supranuclear palsy-Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy and progressive supranuclear palsy-Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ventral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supranuclear palsy-Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.

4.
Hum Brain Mapp ; 45(1): e26558, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224546

RESUMEN

Age is an important variable to describe the expected brain's anatomy status across the normal aging trajectory. The deviation from that normative aging trajectory may provide some insights into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using only the brain age gap information (i.e., the difference between the chronological age and the estimated age) can be not enough informative for disease classification problems. In this paper, we propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of each brain structure. This feature can be used in a multi-disease classification task for an accurate differential diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized, providing some insights about brain abnormality and helping clinicians in real medical contexts.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen/métodos , Biomarcadores
5.
Cerebellum ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151675

RESUMEN

Multiple lines of evidence across human functional, lesion, and animal data point to a cerebellar role, in particular of crus I, crus II, and lobule VIIB, in cognitive function. However, a mapping of distinct facets of cognitive function to cerebellar structure is missing. We analyzed structural neuroimaging data from the Healthy Brain Network (HBN). Cerebellar parcellation was performed with a validated automated segmentation pipeline (CERES) and stringent visual quality check (n = 662 subjects retained from initial n = 1452). Canonical correlation analyses (CCA) examined regional gray matter volumetric (GMV) differences in association to cognitive function (quantified with NIH Toolbox Cognition domain, NIH-TB), accounting for psychopathology severity, age, sex, scan location, and intracranial volume. Multivariate CCA uncovered a significant correlation between two components entailing a latent cognitive canonical (NIH-TB subscales) and a brain canonical variate (cerebellar GMV and intracranial volume, ICV), surviving bootstrapping and permutation procedures. The components correspond to partly shared cerebellar-cognitive function relationship with a first map encompassing cognitive flexibility (r = 0.89), speed of processing (r = 0.65), and working memory (r = 0.52) associated with regional GMV in crus II (r = 0.57) and lobule X (r = 0.59) and a second map including the crus I (r = 0.49) and lobule VI (r = 0.49) associated with working memory (r = 0.51). We show evidence for a structural subspecialization of the cerebellum topography for cognitive function in a transdiagnostic sample.

6.
Artif Intell Med ; 144: 102636, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783553

RESUMEN

Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia. Behavioral alterations and cognitive impairments are found in the clinical courses of both diseases, and their differential diagnosis can sometimes pose challenges for physicians. Therefore, an accurate tool dedicated to this diagnostic challenge can be valuable in clinical practice. However, current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis. In this paper, we propose a deep learning-based approach for both disease detection and differential diagnosis. We suggest utilizing two types of biomarkers for this application: structure grading and structure atrophy. First, we propose to train a large ensemble of 3D U-Nets to locally determine the anatomical patterns of healthy people, patients with Alzheimer's disease and patients with Frontotemporal dementia using structural MRI as input. The output of the ensemble is a 2-channel disease's coordinate map, which can be transformed into a 3D grading map that is easily interpretable for clinicians. This 2-channel disease's coordinate map is coupled with a multi-layer perceptron classifier for different classification tasks. Second, we propose to combine our deep learning framework with a traditional machine learning strategy based on volume to improve the model discriminative capacity and robustness. After both cross-validation and external validation, our experiments, based on 3319 MRIs, demonstrated that our method produces competitive results compared to state-of-the-art methods for both disease detection and differential diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Demencia Frontotemporal/diagnóstico por imagen , Diagnóstico Diferencial , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
7.
Hum Brain Mapp ; 44(17): 5602-5611, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615064

RESUMEN

Atrophy related to multiple sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. We modeled the volumetric trajectories of brain structures across the entire lifespan using 40,944 subjects (38,295 healthy controls and 2649 MS patients). Then, we estimated the chronological progression of MS by assessing the divergence of lifespan trajectories between normal brain charts and MS brain charts. Chronologically, the first affected structure was the thalamus, then the putamen and the pallidum (around 4 years later), followed by the ventral diencephalon (around 7 years after thalamus) and finally the brainstem (around 9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus and accumbens nuclei exhibited a limited atrophy pattern. Subcortical atrophy was more pronounced than cortical atrophy. The thalamus was the most impacted structure with a very early divergence in life. Our experiments showed that lifespan models of most impacted structures could be an important tool for future preclinical/prodromal prognosis and monitoring of MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Longevidad , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Atrofia/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología
9.
Mol Autism ; 14(1): 18, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189195

RESUMEN

BACKGROUND: The cerebellum contains more than 50% of all neurons in the brain and is involved in a broad range of cognitive functions, including social communication and social cognition. Inconsistent atypicalities in the cerebellum have been reported in individuals with autism compared to controls suggesting the limits of categorical case control comparisons. Alternatively, investigating how clinical dimensions are related to neuroanatomical features, in line with the Research Domain Criteria approach, might be more relevant. We hypothesized that the volume of the "cognitive" lobules of the cerebellum would be associated with social difficulties. METHODS: We analyzed structural MRI data from a large pediatric and transdiagnostic sample (Healthy Brain Network). We performed cerebellar parcellation with a well-validated automated segmentation pipeline (CERES). We studied how social communication abilities-assessed with the social component of the Social Responsiveness Scale (SRS)-were associated with the cerebellar structure, using linear mixed models and canonical correlation analysis. RESULTS: In 850 children and teenagers (mean age 10.8 ± 3 years; range 5-18 years), we found a significant association between the cerebellum, IQ and social communication performance in our canonical correlation model. LIMITATIONS: Cerebellar parcellation relies on anatomical boundaries, which does not overlap with functional anatomy. The SRS was originally designed to identify social impairments associated with autism spectrum disorders. CONCLUSION: Our results unravel a complex relationship between cerebellar structure, social performance and IQ and provide support for the involvement of the cerebellum in social and cognitive processes.


Asunto(s)
Cerebelo , Habilidades Sociales , Adolescente , Humanos , Niño , Cerebelo/diagnóstico por imagen , Encéfalo , Cognición/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos
10.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993352

RESUMEN

Background: Atrophy related to Multiple Sclerosis (MS) has been found at the early stages of the disease. However, the archetype dynamic trajectories of the neurodegenerative process, even prior to clinical diagnosis, remain unknown. Methods: We modeled the volumetric trajectories of brain structures across the entire lifespan using 40944 subjects (38295 healthy controls and 2649 MS patients). Then, we estimated the chronological progression of MS by assessing the divergence of lifespan trajectories between normal brain charts and MS brain charts. Results: Chronologically, the first affected structure was the thalamus, then the putamen and the pallidum (3 years later), followed by the ventral diencephalon (7 years after thalamus) and finally the brainstem (9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus and accumbens nuclei exhibited a limited atrophy pattern. Conclusion: Subcortical atrophy was more pronounced than cortical atrophy. The thalamus was the most impacted structure with a very early divergence in life. It paves the way toward utilization of these lifespan models for future preclinical/prodromal prognosis and monitoring of MS.

11.
Alzheimers Dement ; 19(8): 3283-3294, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36749884

RESUMEN

INTRODUCTION: The three clinical variants of frontotemporal dementia (behavioral variant [bvFTD], semantic dementia, and progressive non-fluent aphasia [PNFA]) are likely to develop over decades, from the preclinical stage to death. METHODS: To describe the long-term chronological anatomical progression of FTD variants, we built lifespan brain charts of normal aging and FTD variants by combining 8022 quality-controlled MRIs from multiple large-scale data-bases, including 107 bvFTD, 44 semantic dementia, and 38 PNFA. RESULTS: We report in this manuscript the anatomical MRI staging schemes of the three FTD variants by describing the sequential divergence of volumetric trajectories between normal aging and FTD variants. Subcortical atrophy precedes focal cortical atrophy in specific behavioral and/or language networks, with a "radiological" prodromal phase lasting 8-10 years (time elapsed between the first structural alteration and canonical cortical atrophy). DISCUSSION: Amygdalar and striatal atrophy can be candidate biomarkers for future preclinical/prodromal FTD variants definitions. HIGHLIGHTS: We describe the chronological MRI staging of the most affected structures in the three frontotemporal dementia (FTD) syndromic variants. In behavioral variant of FTD (bvFTD): bilateral amygdalar, striatal, and insular atrophy precedes fronto-temporal atrophy. In semantic dementia: bilateral amygdalar atrophy precedes left temporal and hippocampal atrophy. In progressive non-fluent aphasia (PNFA): left striatal, insular, and thalamic atrophy precedes opercular atrophy.


Asunto(s)
Afasia , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Atrofia , Lenguaje
12.
Comput Med Imaging Graph ; 104: 102171, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640484

RESUMEN

Alzheimer's Disease is the most common cause of dementia. Accurate diagnosis and prognosis of this disease are essential to design an appropriate treatment plan, increasing the life expectancy of the patient. Intense research has been conducted on the use of machine learning to identify Alzheimer's Disease from neuroimaging data, such as structural magnetic resonance imaging. In recent years, advances of deep learning in computer vision suggest a new research direction for this problem. Current deep learning-based approaches in this field, however, have a number of drawbacks, including the interpretability of model decisions, a lack of generalizability information and a lower performance compared to traditional machine learning techniques. In this paper, we design a two-stage framework to overcome these limitations. In the first stage, an ensemble of 125 U-Nets is used to grade the input image, producing a 3D map that reflects the disease severity at voxel-level. This map can help to localize abnormal brain areas caused by the disease. In the second stage, we model a graph per individual using the generated grading map and other information about the subject. We propose to use a graph convolutional neural network classifier for the final classification. As a result, our framework demonstrates comparative performance to the state-of-the-art methods in different datasets for both diagnosis and prognosis. We also demonstrate that the use of a large ensemble of U-Nets offers a better generalization capacity for our framework.


Asunto(s)
Enfermedad de Alzheimer , Inteligencia Artificial , Humanos , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Neuroimagen
13.
Epilepsy Behav ; 140: 109084, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702054

RESUMEN

BACKGROUND: Structural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE. METHODS: Thirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox. RESULTS: An increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE. CONCLUSIONS: We report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy.


Asunto(s)
Mapeo Encefálico , Epilepsia Generalizada , Humanos , Mapeo Encefálico/métodos , Mesencéfalo/diagnóstico por imagen , Epilepsia Generalizada/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Inmunoglobulina E
14.
Autism Res ; 16(2): 280-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495045

RESUMEN

Cerebellar abnormalities have been reported in autism spectrum disorder (ASD). Beyond its role in hallmark features of ASD, the cerebellum and its connectivity with forebrain structures also play a role in navigation. However, the current understanding of navigation abilities in ASD is equivocal, as is the impact of the disorder on the functional anatomy of the cerebellum. In the present study, we investigated the navigation behavior of a population of ASD and typically developing (TD) adults related to their brain anatomy as assessed by structural and functional MRI at rest. We used the Starmaze task, which permits assessing and distinguishing two complex navigation behaviors, one based on allocentric learning and the other on egocentric learning of a route with multiple decision points. Compared to TD controls, individuals with ASD showed similar exploration, learning, and strategy performance and preference. In addition, there was no difference in the structural or functional anatomy of the cerebellar circuits involved in navigation between the two groups. The findings of our work suggest that navigation abilities, spatio-temporal memory, and their underlying circuits are preserved in individuals with ASD.


Asunto(s)
Trastorno del Espectro Autista , Adulto , Humanos , Encéfalo , Mapeo Encefálico , Cerebelo/diagnóstico por imagen , Aprendizaje , Imagen por Resonancia Magnética
15.
Mult Scler ; 29(2): 295-300, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35959722

RESUMEN

OBJECTIVES: Investigating differential vulnerability of thalamic nuclei in multiple sclerosis (MS). METHODS: In a secondary analysis of prospectively collected datasets, we pooled 136 patients with MS or clinically isolated syndrome and 71 healthy controls all scanned with conventional 3D-T1 and white-matter-nulled magnetization-prepared rapid gradient echo (WMn-MPRAGE) and tested for cognitive performance. T1-based thalamic segmentation was compared with the reference WMn-MPRAGE method. Volumes of thalamic nuclei were compared according to clinical phenotypes and cognitive profile. RESULTS: T1- and WMn-MPRAGE provided comparable segmentations (0.84 ± 0.13 < volume-similarity-index < 0.95 ± 0.03). Medial and posterior thalamic groups were significantly more affected than anterior and lateral groups. Cognitive impairment related to volume loss of the anterior group. CONCLUSION: Thalamic nuclei closest to the third ventricle are more affected, with cognitive consequences.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Núcleos Talámicos/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
16.
Transl Stroke Res ; 14(2): 185-192, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437660

RESUMEN

Microstructural changes after an ischemic stroke (IS) have mainly been described in white matter. Data evaluating microstructural changes in gray matter (GM) remain scarce. The aim of the present study was to evaluate the integrity of GM on longitudinal data using mean diffusivity (MD), and its influence on post-IS cognitive performances. A prospective study was conducted, including supra-tentorial IS patients without pre-stroke disability. A cognitive assessment was performed at baseline and 1 year, including a Montreal Cognitive Assessment, an Isaacs set test, and a Zazzo cancelation task (ZCT): completion time and number of errors. A 3-T brain MRI was performed at the same two time-points, including diffusion tensor imaging for the assessment of GM MD. GM volume was also computed, and changes in GM volume and GM MD were evaluated, followed by the assessment of the relationship between these structural changes and changes in cognitive performances. One hundred and four patients were included (age 68.5 ± 21.5, 38.5% female). While no GM volume loss was observed, GM MD increased between baseline and 1 year. The increase of GM MD in left fronto-temporal regions (dorsolateral prefrontal cortex, superior and medial temporal gyrus, p < 0.05, Threshold-Free Cluster Enhancement, 5000 permutations) was associated with an increase time to complete ZCT, regardless of demographic confounders, IS volume and location, GM, and white matter hyperintensity volume. GM integrity deterioration was thus associated with processing speed slowdown, and appears to be a biomarker of cognitive frailty. This broadens the knowledge of post-IS cognitive impairment mechanisms.


Asunto(s)
Accidente Cerebrovascular Isquémico , Sustancia Blanca , Humanos , Femenino , Masculino , Sustancia Gris/diagnóstico por imagen , Imagen de Difusión Tensora , Velocidad de Procesamiento , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
17.
Ann Neurol ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36511514

RESUMEN

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

18.
Biol Psychiatry ; 92(8): 674-682, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36137706

RESUMEN

BACKGROUND: The cerebellum contains more than 50% of the brain's neurons and is involved in social cognition. Cerebellar anatomical atypicalities have repeatedly been reported in individuals with autism. However, studies have yielded inconsistent findings, likely because of a lack of statistical power, and did not capture the clinical and neuroanatomical diversity of autism. Our aim was to better understand cerebellar anatomy and its diversity in autism. METHODS: We studied cerebellar gray matter morphology in 274 individuals with autism and 219 control subjects of a multicenter European cohort, EU-AIMS LEAP (European Autism Interventions-A Multicentre Study for Developing New Medications; Longitudinal European Autism Project). To ensure the robustness of our results, we conducted lobular parcellation of the cerebellum with 2 different pipelines in addition to voxel-based morphometry. We performed statistical analyses with linear, multivariate (including normative modeling), and meta-analytic approaches to capture the diversity of cerebellar anatomy in individuals with autism and control subjects. Finally, we performed a dimensional analysis of cerebellar anatomy in an independent cohort of 352 individuals with autism-related symptoms. RESULTS: We did not find any significant difference in the cerebellum when comparing individuals with autism and control subjects using linear models. In addition, there were no significant deviations in our normative models in the cerebellum in individuals with autism. Finally, we found no evidence of cerebellar atypicalities related to age, IQ, sex, or social functioning in individuals with autism. CONCLUSIONS: Despite positive results published in the last decade from relatively small samples, our results suggest that there is no striking difference in cerebellar anatomy of individuals with autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno Autístico/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Estudios de Cohortes , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
19.
Front Neuroinform ; 16: 862805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685943

RESUMEN

Automatic and reliable quantitative tools for MR brain image analysis are a very valuable resource for both clinical and research environments. In the past few years, this field has experienced many advances with successful techniques based on label fusion and more recently deep learning. However, few of them have been specifically designed to provide a dense anatomical labeling at the multiscale level and to deal with brain anatomical alterations such as white matter lesions (WML). In this work, we present a fully automatic pipeline (vol2Brain) for whole brain segmentation and analysis, which densely labels (N > 100) the brain while being robust to the presence of WML. This new pipeline is an evolution of our previous volBrain pipeline that extends significantly the number of regions that can be analyzed. Our proposed method is based on a fast and multiscale multi-atlas label fusion technology with systematic error correction able to provide accurate volumetric information in a few minutes. We have deployed our new pipeline within our platform volBrain (www.volbrain.upv.es), which has been already demonstrated to be an efficient and effective way to share our technology with the users worldwide.

20.
Neuroradiology ; 64(10): 1989-2000, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35556149

RESUMEN

PURPOSE: The goal of the current study was to introduce a new methodology that holds a promise to be used in hippocampus-aging studies using sub-millimeter super-resolution hybrid diffusion imaging (HYDI) MRI. METHODS: HYDI diffusion data were acquired in two groups of older and younger healthy participants recruited from the Indiana Alzheimer's Disease Research Center and community. These data were then transformed into super-resolution diffusion images before the hippocampal subfield analyses. We studied the correlation between the subjects' age and the structural connectivity involving the hippocampal subfields and the connectivity between the whole hippocampus and the cerebral cortex. RESULTS: Structural integrity derived from the tractography streamlines between the hippocampal subfields was reduced in older than younger adults. CONCLUSION: The findings offered a new promising framework, and they opened avenues for future studies to explore the relationship between the structural connectivity in the hippocampal area and different types of dementia.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Adulto , Anciano , Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Estudios de Factibilidad , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...